Expression of a human hepatocyte growth factor/scatter factor cDNA in MDCK epithelial cells influences cell morphology, motility, and anchorage-independent growth

نویسندگان

  • Y Uehara
  • N Kitamura
چکیده

The addition of exogenous hepatocyte growth factor (HGF)/scatter factor (SF) to MDCK epithelial cells results in fibroblastic morphology and cell motility. We generated HGF/SF producing MDCK cells by transfection with an expression plasmid containing human HGF/SF cDNA. Production of HGF/SF by these cells induced a change from an epithelial to a fibroblastic morphology and increased cell motility. In addition, the HGF/SF producing cells acquired efficient anchorage-independent growth in soft agar but did not form tumors in nude mice. The morphological change and the stimulation of the anchorage-independent growth were prevented by anti-HGF/SF antibody, suggesting that the factor is secreted and then exerts its effects through cell surface receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of a Human Hepatocyte Growth Factor/Scatter Factor eDNA in MDCK Epithelial Cells Influences Cell Morphology, Motility, and Anchorage-independent Growth

The addition of exogenous hepatocyte growth factor (HGF)/scatter factor (SF) to MDCK epithelial cells results in fibroblastic morphology and cell motility. We generated HGF/SF producing MDCK cells by transfection with an expression plasmid containing human HGF/SF eDNA. Production of HGF/SF by these cells induced a change from an epithelial to a fibroblastic morphology and increased cell motilit...

متن کامل

Multiple aspects of the phenotype of mammary epithelial cells transformed by expression of activated M-Ras depend on an autocrine mechanism mediated by hepatocyte growth factor/scatter factor.

Multiple aspects of the transformed phenotype induced in a murine mammary epithelial cell line scp-2 by expression of activated G22V M-Ras, including maintainance of cell number at low density, anchorage-independent growth, invasion of Matrigel, and secretion of matrix metalloproteinases (MMP) 2 and 9, were dependent on an autocrine mechanism. Conditioned medium from dense cultures of scp-2 cel...

متن کامل

Disruption of epithelial cell-matrix interactions induces apoptosis

Cell-matrix interactions have major effects upon phenotypic features such as gene regulation, cytoskeletal structure, differentiation, and aspects of cell growth control. Programmed cell death (apoptosis) is crucial for maintaining appropriate cell number and tissue organization. It was therefore of interest to determine whether cell-matrix interactions affect apoptosis. The present report demo...

متن کامل

Mutant cadherin affects epithelial morphogenesis and invasion, but not transformation.

MDCK cells were engineered to reversibly express mutant E-cadherin protein with a large extracellular deletion. Mutant cadherin overexpression reduced the expression of endogenous E- and K-cadherins in MDCK cells to negligible levels, resulting in decreased cell adhesion. Despite severe impairment of the cadherin adhesion system, cells overexpressing mutant E-cadherin formed fluid-filled cysts ...

متن کامل

The Met receptor tyrosine kinase transduces motility, proliferation, and morphogenic signals of scatter factor/hepatocyte growth factor in epithelial cells

Depending on the target cells and culture conditions, scatter factor/hepatocyte growth factor (SF/HGF) mediates several distinct activities, i.e., cell motility, proliferation, invasiveness, tubular morphogenesis, angiogenesis, or cytotoxicity. A small isoform of SF/HGF encoded by a natural splice variant, which consists of the NH2-terminal hairpin structure and the first two kringle domains bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 117  شماره 

صفحات  -

تاریخ انتشار 1992